
Q L I K . C O M

W H I T E P A P E R

Best Practices
Guide
Qlik Sense®

Clever Anjos

Dalton Ruer

David Freriks

Partner Engineering - Qlik

Prasad Kona

Databricks

Qlik on Databricks – Best Practices Guide for Qlik Sense

1

Table of Contents

Summary .. 3

Introduction .. 3

Qlik Architecture ... 4

Associative, in-memory apps .. 4

Databricks Architecture ... 6

High Level Qlik & Databricks Integration Options ... 7

Summary of Qlik & Databricks Usage Options .. 8

In-Memory options for how to load data into Qlik Sense: .. 8

On-demand Apps .. 9

Deep Dive Databricks & Qlik Method Decision Tree: .. 10

Personas by Usage: Consumers, Analysts, Designers ... 15

Performance Considerations / Best Practices by Technique ... 16

Incremental Load Options .. 17

Incremental Loads using QVD’s .. 17

QVD-based Incremental Load - Insert Only .. 18

QVD-based Incremental Load - Insert and Update .. 19

QVD-based Incremental Load - Insert, Update and Delete ... 20

Incremental Loads using “Partial Load” .. 21

 Change data feed & Merge .. 22

Change data feed & Qlik Merge Function Details .. 23

On-Demand Options ... 24

On Demand App Generation (ODAG) .. 24

Dynamic Views ... 24

Direct Query Application ... 25

Qlik on Databricks – Best Practices Guide for Qlik Sense

2

Appendix: Connecting Qlik to Databricks (QSE and Qlik SaaS) ... 29

Authentication Methods ... 30

Obtaining Databricks credentials and connection details .. 30

Creating the Data Connection .. 31

Conclusions ... 34

Qlik on Databricks – Best Practices Guide for Qlik Sense

3

Summary
Qlik and Databricks make a powerful combination when deploying modernized data and analytics

pipelines across an enterprise. Due to emerging technologies and urgency of data, there are many

architectural avenues available when deploying Qlik and Databricks together. This document will

highlight and clarify the options and best practices and discuss high level concepts, practical

applications, and help distinguish when to use which approach with Qlik and Databricks. This

document will be updated as new capabilities emerge to both Databricks and the Qlik Sense

platform. This document also assumes a working knowledge of both Qlik and Databricks

technologies by the reader.

Introduction

Qlik Sense sets the benchmark for third-generation analytics platforms, empowering everyone in

your organization to make data-driven decisions. Built on our unique Associative Engine, it supports

a full range of users and use-cases across the life cycle from data to insight: self-service analytics,

interactive dashboards, conversational analytics, custom and embedded analytics, mobile analytics,

reporting and alerting. It augments and enhances human intuition with AI-powered insight

suggestions, automation, and natural language interaction. And Qlik Sense offers unmatched

performance and governance, with the convenience of SaaS or on-premises deployment, or both

Qlik Sense is a complete data and analytics platform enabling users of all levels to explore data with

agility and high performance. Databricks is a cloud based, massively scalable platform that provides

effective management of enterprise class data.

Qlik and Databricks together provide a balance to optimize the “speed of thought” exploration

capabilities when Qlik’s associative engine with its powerful search and AI capabilities is combined

with Databricks’s powerful and scalable database engine technology.

Blending the ideas “getting the data you need when you need it” and “getting the data how you need

it” with two cutting edge technology platforms creates unique solutions that deliver enterprise

analytics, reporting, dashboarding, and data science to the business.

Qlik on Databricks – Best Practices Guide for Qlik Sense

4

Qlik Architecture
Qlik Sense sets the benchmark for third-generation analytics

platforms, empowering everyone in your organization to make

data-driven decisions. Built on our unique Associative Engine, it

supports a full range of users and use-cases across the life-cycle

from data to insight: self-service analytics, interactive

dashboards, conversational analytics, custom and embedded

analytics, mobile analytics, reporting and alerting. It augments

and enhances human intuition with AI-powered insight

suggestions, automation, and natural language interaction.

Further, Qlik Sense unmatched performance and governance,

with the convenience of SaaS or on-premises deployment.

Qlik Sense consists of Qlik-managed cloud-based solutions: Qlik

Sense Enterprise SaaS & Qlik Sense Business, and a customer-

managed solution: Qlik Sense Enterprise Client-Managed.

Associative, in-memory apps

Qlik couples in-memory data caching technology with an

Associative Engine that lets you analyze and freely navigate data

intuitively. In its second generation, the proven Qlik Associative

Engine allows users to easily explore data and create

visualizations based on data from multiple data sources

simultaneously. These sources range from Excel® and Access® to

databases such as Oracle® and SQL Server to big data sources such

as Databricks®, Data Lakes with S3, etc.

Qlik Sense uses columnar, in-memory storage. Unique entries are

only stored once in-memory, and relationships among data elements are represented as pointers.

THE ASSOCIATIVE
DIFFERENCE®

Relational databases and queries
were designed in the 1980s for
transactional systems, not modern
analytics. Query-based tools leave
data behind and limit your users to
restricted linear exploration,
resulting in blind spots and lost
opportunities.

Qlik Sense runs on the unique Qlik
Associative Engine, enabling users
of all skill levels to explore their
data freely without limitations. The
Qlik Associative Engine brings
together unlimited combinations of
data — both big and small —
without leaving any data behind. It
offers unprecedented freedom of
exploration through interactive
selection and search, instantly
recalculating all analytics and
revealing associations to your user
in green (selected), white
(associated), and gray (unrelated).
By keeping all visualizations in
context together and retaining both
associated and unrelated values in
the analysis, the Qlik Associative
Engine helps your users discover
hidden insights that query-based
tools would miss.

The Qlik Associative Engine is
purpose-built for highly scalable,
dynamic calculation and association
on massive data volumes for large
numbers of users. This unique
technology is our primary
advantage, with more than 25 years
of innovation and investment.

Qlik on Databricks – Best Practices Guide for Qlik Sense

5

This allows for significant data compression, more data in RAM, and faster response times for your

users.

In some big data scenarios, data should remain at the source, which is why Qlik uses a built-in

technique called On-Demand Application Generation. Data sources can be queried based on your

users’ selections, yet still provide an associative experience to your user. Qlik’s Dynamic Views

feature expands this capability further for the biggest data sources available.

User Interfaces

Access to the Qlik Sense Enterprise SaaS environment is through a zero-footprint web browser

interface (known as the Qlik Sense Hub). The Qlik Sense web browser interface makes all aspects of

development, drag-and-drop content

creation, and consumption possible. Qlik

Sense features a responsive design

methodology to automatically display

and resize visualizations with the

appropriate layout and information to fit

the device — whether it is a browser on a

laptop or desktop, tablet, or smartphone.

Built with current standards of HTML5, CSS3, JavaScript®, and web sockets, Qlik Sense enables you

to build and consume apps on any device.

In addition to the web-based interface, Qlik Sense supports conversational analytics which

integrates with major chat platforms such as Slack and MS Teams and data alerting capabilities to

allow users to subscribe to and be notified of key changes to their data.

A quick reference to the entire Qlik Platform including Data Integration capabilities, cataloging, and

extending Qlik Sense showcases the power of our integrated suite for Databricks.

Qlik on Databricks – Best Practices Guide for Qlik Sense

6

Databricks Architecture

The Databricks Lakehouse Platform

The Databricks Lakehouse Platform combines the best elements of data lakes and data warehouses

to deliver the reliability, strong governance and performance of data warehouses with the openness,

flexibility and machine learning support of data lakes.

This unified approach simplifies your modern data stack by eliminating the data silos that

traditionally separate and complicate data engineering, analytics, BI, data science and machine

learning. It’s built on open source and open standards to maximize flexibility. And, its common

approach to data management, security and governance helps you operate more efficiently and

innovate faster.

Qlik on Databricks – Best Practices Guide for Qlik Sense

7

High Level Qlik & Databricks Integration Options

Qlik and Databricks offer a variety of integration capabilities suited for specific scenarios to

maximize resources, maintain performance, and fulfill the business requirements across the

organization. The number of concurrent users, data refresh frequencies, performance, user

experience, and total cost will all contribute to deciding which integration options to take advantage

of. Qlik provides several ways to load and consume data from Databricks. The table below describes

each integration configuration, feel free to use this as a reference guide.

Integration Option Method Use Case

In-Memory Full / Incremental Load (QVD) Most common and best performing. Batch

reloads leveraging a QVD for incremental

updates and optimized for analytics engine.

In-Memory + Databricks Full / Incremental Load

(Change Data Feed)

Databricks optimized reload – especially

useful when data is needing to be compared

current vs historical state and/or for

incremental reloads

On-Demand ODAG Structured Drill to Detail for access to large

data volumes

On-Demand Dynamic Views Supporting details on demand inside existing

app as a chart(s)

Qlik on Databricks – Best Practices Guide for Qlik Sense

8

Summary of Qlik & Databricks Usage Options

In-Memory options for how to load data into Qlik Sense:

Full reload every time on a schedule:

• Could lead to long load times

depending on data volume.

• Recommended if the data is highly

volatile or has a high number of

changes.

Incrementally load only new data

• Reload deltas on a schedule: This

can be set up by a Qlik developer in

the ELT script. Allows Qlik to only

update the changes in the data. This

method allows for near-time refresh

of data into the Qlik engine and

visualization layer.

Qlik on Databricks – Best Practices Guide for Qlik Sense

9

On-demand Apps

On-demand apps help business users and IT departments derive value from big data environments

in numerous ways. On-demand apps:

On Demand App Generation (ODAG)

• Detailed Data on Demand: This is a

technique typically used in big/huge data

scenarios where a Qlik app is built to

contain summarized data. There is a Qlik

“details” app as a template and that takes

parameters passed from the summary app

and runs live on demand against

Databricks. The user is then presented with

the appropriate slice of data based on

those selections. This method is good for

summary-detail analytics.

Dynamic Views

• Live Data Visualizations: This option is used when live / near-time data is needed as part of the

Qlik app. Using the ODAG framework, live data under certain query volume thresholds can be

triggered to update based on user interactions with the application. As users make selections

they will be prompted and if they choose to, Qlik will reload data live from Databricks to match

their selections.

Direct Query applications
• Direct Query is a capability in Qlik Sense SaaS that enables analytics apps to generate SQL

queries directly against cloud databases as the user interacts with data through visualizations

Qlik on Databricks – Best Practices Guide for Qlik Sense

10

and dynamic filtering. There is no need to load any data ahead and there are no limits on the

data volumes involved and the performance is all driven by the underlying cloud database

Deep Dive Databricks & Qlik Method Decision Tree:
Many organizations have well established data pipelines and a user base begging for access to data

and insights. But between the databases and the dashboards, lay the the integrations and load

architectures that make consuming data possible. This next section is to help you understand

several integration options available in Qlik Sense and which to use when deploying Qlik and

Databricks together.

Some of the main variables when deciding will be the total number of concurrent users, system

performance thresholds, costs, and the actual business requirements.

Let's begin with a high level understanding of each of the Qlik integration options before discussing

which business use cases they might apply to:

Incremental Load

(Scheduled Data Load)

Cached In-Memory

An Incremental Load is a scheduled process where Qlik loads the latest data for all of

the tables needed, merges the changes to existing QVD’s (the previously loaded

data/cache), then rewrites those QVD’s/Cache.

• All applications and users would have access to the

new information for those tables.

• When dealing with large data sources, this is a great

balance between fresh and fast as only the changed

data is loaded on a pre-defined schedule after the

initial bulk load.

Partial Reload

Cached In-Memory

+

New Data Added In-Memory

(On-Demand or Scheduled)

A full reload or incremental load always starts by deleting all tables in the existing data

model, and then runs the load script.

A partial reload keeps all tables in the data model and then executes only Load and

Select statements preceded by an Add, Merge, or Replace prefix.

A Partial Reload is where Qlik loads the changed data for a subset of tables and the data

is brought into the Associative Engine.

Qlik on Databricks – Best Practices Guide for Qlik Sense

11

This technology provides a balance between fresh and fast while also ensuring that the

end user is confident that they are seeing the most recent values because they initiate

the action rather than it being scheduled.

This approach is very helpful when your data source has information about what kind of

changes (inserts, updates and deletes)

On Demand Application

Generation - ODAG

(Live Data Load)

Cached In-Memory

For selections

+

Live Data based on Selections

in second application when

user asks

On Demand Application Generation is a process where an end user passes the selections

they have made to a pre-defined template application. Qlik then copies that template,

loads data for that specific cohort and presents it to the end user as a new application.

• The calling application may be

fully in-memory with aggregates,

offering speed of thought action,

while the spawned application

then pulls Live details only if and

when they are needed.

Dynamic Views

(Live Data Load)

Cached In-Memory

For selections

+

Charts from Live Data based

on Selections when user asks

Dynamic Views is a process similar to ODAG but instead of surfacing a new application

to the end user, selected charts from a template

application are displayed in the application they

are currently using. If the user changes their

selections they can ask for the Dynamic Views to

be refreshed.

• This option capitalizes on the

functionality of ODAG, while also

rendering the "live" cohort of data in the

context of the application where the users

made their selections.

Direct Query You may use this approach when your data volumes are huge or change too often what

would make difficult to load the data into the Qlik Engine

So which one is right for YOU?

Qlik on Databricks – Best Practices Guide for Qlik Sense

12

As a primer to choosing the right solution for the right problem, let's begin with some very high level

guidance starting with a focus on how much compute and thus cost is driven by each of the

solutions. Because in many cases the difference between "We WANT Live Data" and "1 minute old

will be FINE" may come down to the implementation cost. In another use case Live Data is a MUST

have regardless of the compute resources and cost associated in solving the problem.

The following chart contains no scale on purpose. It is simply for portraying the concept that each

technology will have increasing amounts of computing requirements associated with them.

Asking the question "Why does each solution increase the amount of compute/cost?" Well, doing an

Incremental Load means that Qlik only asks for the changes from our source 1 time per scheduled

reload. As Partial Re-Load's of data are kicked off by the end user, the same data would need to be

consumed by multiple users, thus increasing the compute needed. On Demand Application

Generation (ODAG) applications will load all of the data for a defined cohort even if it hasn't changed

in years. Dynamic Views require the same data loading as ODAG applications, and as they can be

refreshed as often as desired by the end user to keep in synch with their selections they require more

computing power. From one usability perspective Dynamic Views tend to be more used than ODAG

since the user sees the app as only one datasource. The user not always is aware that SQL queries

are execute compared to ODAG when the user hits the “generate new app” button. And using Direct

Query all the queries are pushed down do the DeltaLake for every selection the user might use.

Qlik on Databricks – Best Practices Guide for Qlik Sense

13

Remember though, that was only a general guide. It is entirely possible that one of your
business use cases only requires a single SQL for an aggregate in an application that is
only used by a small set of end users. Bringing us to the next point: Business driven use
cases are often complex and require the answers to many questions.

The following scenarios walks through some hypothetical use case that lines up with each of the

architectural solutions.

Scenario 1 – ODAG: Drill to Detail Reporting/Analysis

Starting with a summary application of key metrics, a user chooses a selection of criteria which then

is passed to a secondary application that is generated on demand. A customer example of when to

use ODAG:

A Human Resources department has an existing application that is used by 1,290 HR

administrators, managers and employees through the company who make a lot of selections.

The application is currently on a one-hour incremental load schedule. They want to use real

time data instead of waiting for reloads to see potential overtime issues. The details are a

known subset of content in a specific format that shows potential issues, therefore ODAG

provides an interim reload ability in an easily consumable detailed Qlik application.

Scenario 2 – Dynamic Views: Transactional Details in Context

This scenario is best suited for when details for specific transactions need to be viewed in context

with the original Qlik Sense application as a chart inside the application. A customer example of

when to use Dynamic Views:

A customer has several hundred billion records from a transactional system stored in

Databricks which is too much for a single Qlik application. This data is reloaded on a schedule

with the aggregates of KPI’s and other relevant data but not the transactions themselves.

Dynamic Views are used to get the transactions of a cohort of dimensional values that limit

the records to a threshold (say under 100k rows) to be analyzed in any chart on demand. The

Qlik on Databricks – Best Practices Guide for Qlik Sense

14

users of the application need to be able to see the details in the context of the cohort

selected.

Scenario 3 – Partial Reload/Merge: Closing Books / Financial Reporting

Finance leaders closing the books at the end of the month need access to up to the minute

general ledger details. The Qlik application contains very complicated calculations,

hierarchies, and transformations not easily replicated with SQL. The application will only be

used by Accountants and Sr Executive in the corporation which equates to about 25 people.

Data is changing rapidly throughout the close cycle and the users need to see where the

company stands at any point in time. End users have a very high level of interactivity are

required to analyze the data to find issues.

Qlik on Databricks – Best Practices Guide for Qlik Sense

15

Personas by Usage: Consumers, Analysts, Designers

Many roles support the data to insight pipeline - from developers to analysts to

business casual consumers. Each role though requires certain capabilities within the

platform but also levels of access to live data. See the table below to learn which use

case fits each persona.

Consumer Uses prebuilt dashboards, mashups, or pushed content (Reports/Alerts)

Analyst Deep dives into content, can create own content, understands data literacy

Designer Builder and deployer of prebuilt content and complex design/data transforms

*This chart assumes a superset of capabilities (i.e. Designer has Analyst and Consumer capabilities, where Consumers only have the

singular capability)

Use Case
In-Mem

(FL/IL)

In-Mem

(TT IL)

In-Mem (TT

Merge)

ODAG Dynamic

Views

Business Monitoring C C A

Business Alerting C C

Business Reporting C C

Embedded / Mashups C C C

Ad-hoc Analysis A A A A A

Insight Suggestions C C A

Insight Exploration A A A

Storytelling A A A

Assisted Data Prep A

Data Ingestion (LS) D D D D D

Qlik on Databricks – Best Practices Guide for Qlik Sense

16

Use Advanced Analytics

(SSE)1
C C

Develop Advanced

Analytics (SSE)1
A A A

Data Modelling and ETL D D D D D

Application Design &

Development
D D D D D

1 Only available on client managed

FL: Full Load

IL: Incremental Load

TT: Databricks Time Travel

Performance Considerations / Best Practices by Technique

As previewed, Qlik and Databricks together offer a range of ingestion techniques with varying levels

of loading data into memory with Qlik’s analytics engine and purely loading near/real-time data.

There are clear strengths and advantages for each technique in addition to some having limited use

cases.

It’s necessary to understand the caching process between Databricks and Qlik to distinguish how to

optimize each system to support your analytics needs.

Qlik on Databricks – Best Practices Guide for Qlik Sense

17

Incremental Load Options

The following sections will discuss in detail the above strategies on how to

leverage Databricks data depending on use case.

Incremental Loads using QVD’s

This is the most common technique used in Qlik environments to only load

delta data.

Qlik has a data format called QVD that is binary and optimized for re-ingestion

locally. It is a commonly used by Qlik developers as it allows for snapshotting data, reuse of data

structures after transformation, combination and pre-calculation of data, and incremental loads.

Here is the basic process of how it works:

1) Table of data is identified as large enough to not reload entirely every time.

2) Load all the data the first time, store data into QVD file on disk

3) On subsequent loads:

a. Identify a column in the table used for knowing that it is a new record. It can be an

incrementing, numerical ID value in the table, or possibly a date/time field.

b. After the data is loaded from, get the highest value for the aforementioned column

and store it in a variable (e.g. “LastDate”)

c. MERGE LOAD the new data from Databricks but selecting from the big table and

adding a WHERE clause and including the variable from above; For example,

“select * from table where datetimefield > $(LastDate);”

d. Save the QVD, overwriting the previous QVD. If desired, snapshot by saving an

additional QVD with a timestamp or similar. This way you easily can go back to

previous loads if desired.

e. Repeat for any other tables that have a high number of values.

The above is the basic concept; However, there are nuances to account for, so the following

information will dive deeper into the variants.

Here is a Qlik Community Post describing the process: https://community.qlik.com/t5/Qlik-Design-

Blog/Qlik-Sense-Incremental-Load-using-Merge/ba-p/1944225

Qlik on Databricks – Best Practices Guide for Qlik Sense

18

QVD-based Incremental Load - Insert Only

This method offers the ability to retrieve only new records. No updates or deletes

are considered

Example:

QVDFile='lib://DataFiles/NW.Orders_InsertOnly.qvd';
if FileSize('$(QVDFile)') > 0 then //If there is already extracted data
 [NW.Orders]:
 Load
 OrderID,
 CustomerID,
 EmployeeID,
 OrderDate,
 RequiredDate,
 ShippedDate,
 ShipVia,
 Freight,
 ShipName,
 ShipAddress,
 ShipCity,
 ShipRegion,
 ShipPostalCode,
 ShipCountry
 from [$(QVDFile)](qvd);
 t:load Max(OrderID) as MaxOrderID Resident [NW.Orders];
 LastOrderID=Peek('MaxOrderID'); // Retrieves the last OrderID
 Drop Table t;
else
 LastOrderID = '0';
 [NW.Orders]:load null() as OrderID AutoGenerate 0; // fake table
endif

Concatenate([NW.Orders])
SELECT OrderID,
 CustomerID,
 EmployeeID,
 OrderDate,
 RequiredDate,
 ShippedDate,
 ShipVia,
 Freight,
 ShipName,
 ShipAddress,
 ShipCity,
 ShipRegion,
 ShipPostalCode,
 ShipCountry
FROM northwind.orders
Where OrderID > $(LastOrderID);

Store [NW.Orders] into [$(QVDFile)](qvd);

Qlik on Databricks – Best Practices Guide for Qlik Sense

19

QVD-based Incremental Load - Insert and Update

For this approach we rely in two fields:

• A timestamp or sequential value so we can extract only records

added/updated since the last execution

• A primary key, so we will keep only the most recent record for every key

QVDFile='lib://DataFiles/NW.Orders_InsertUpdate.qvd';
if FileSize('$(QVDFile)') > 0 then //If there is already extracted data
 [NW.Orders]:
 Load
 OrderID,
 CustomerID,
 EmployeeID,
 OrderDate,
 RequiredDate,
 ShippedDate,
 ShipVia,
 Freight,
 ShipName,
 ShipAddress,
 ShipCity,
 ShipRegion,
 ShipPostalCode,
 ShipCountry,
 updated_dt
 from [$(QVDFile)](qvd);
 t:load Max(updated_dt) as updated_dt Resident [NW.Orders];
 updated_dt=Timestamp(Peek('updated_dt'),'YYYY-MM-DD hh:mm:ss.fff');
 // Retrieves the last update
 Drop Table t;
else
 updated_dt = '2000-01-01'; // Retrieves the last update
 [NW.Orders]:load null() as OrderID AutoGenerate 0; // fake table
endif

Merge(updated_dt) on OrderID Concatenate([NW.Orders])
Load If(Exists(OrderID),'U','I') as Operation, *; // New record? based on OrderID
SELECT OrderID,
 CustomerID,
 EmployeeID,
 OrderDate,
 RequiredDate,
 ShippedDate,
 ShipVia,
 Freight,
 ShipName,

Qlik on Databricks – Best Practices Guide for Qlik Sense

20

 ShipAddress,
 ShipCity,
 ShipRegion,
 ShipPostalCode,
 ShipCountry,
 updated_dt
FROM northwind.orders
Where updated_dt > '$(updated_dt)';

Store [NW.Orders] into [$(QVDFile)](qvd);

QVD-based Incremental Load - Insert, Update and Delete

What if records were deleted from the source database between script

executions? In this case we need to:

• Collects all changes since last execution

• Drops all records that don´t exist on source anymore

QVDFile='lib://DataFiles/NW.Orders_InsertUpdateDelete.qvd';
if FileSize('$(QVDFile)') > 0 then //If there is already extracted data
 [NW.Orders]:
 Load
 OrderID,
 CustomerID,
 EmployeeID,
 OrderDate,
 RequiredDate,
 ShippedDate,
 ShipVia,
 Freight,
 ShipName,
 ShipAddress,
 ShipCity,
 ShipRegion,
 ShipPostalCode,
 ShipCountry,
 updated_dt
 from [$(QVDFile)](qvd);
 t:load Max(updated_dt) as updated_dt Resident [NW.Orders];
 updated_dt=Timestamp(Peek('updated_dt'),'YYYY-MM-DD hh:mm:ss.fff');
 // Retrieves the last update
 Drop Table t;
else
 updated_dt = '2000-01-01'; // Retrieves the last update
 [NW.Orders]:load null() as OrderID AutoGenerate 0; // fake table
endif

Merge(updated_dt) on OrderID Concatenate([NW.Orders])
Load If(Exists(OrderID),'U','I') as Operation, *; // New record? based on OrderID

Qlik on Databricks – Best Practices Guide for Qlik Sense

21

SELECT OrderID,
 CustomerID,
 EmployeeID,
 OrderDate,
 RequiredDate,
 ShippedDate,
 ShipVia,
 Freight,
 ShipName,
 ShipAddress,
 ShipCity,
 ShipRegion,
 ShipPostalCode,
 ShipCountry,
 updated_dt
FROM northwind.orders
Where updated_dt > '$(updated_dt)';

// Keeping only records which OrderID is still in database, this will remove records
// that don´t exists at source anymore
Inner Keep([NW.Orders])
SQL SELECT DISTINCT OrderID
FROM northwind.orders;

Store [NW.Orders] into [$(QVDFile)](qvd);

Incremental Loads using “Partial Load”
Partial Load is helpful when you have new data to append to an existing table but do *not* want to

load the rest of the tables. This is helpful when you have one table with a lot real time chances and a

large data set from many sources in the rest of the data model.

Examples:

ADD LOAD * from Databricks.FactTable where createdatetime > $(lastreloaddatetime);

The above will run when the “Partial” option has been set on a reload AND will run when the partial

flag is not set.

ADD ONLY LOAD * from Databricks.FactTable where createdatetime > $(lastreloaddatetime);

The above will run ONLY when the Partial flag has been set and will *not* be run when partial is set to false in

the reload.

Qlik on Databricks – Best Practices Guide for Qlik Sense

22

 Change data feed & Merge
Traditionally Qlik developers have utilized a Last Modified Timestamp field so

that they could load only the changed values. However, there are many times

that data tables don't have a Last Modified Timestamp so then Full Reloads

were the only option.

However, Databricks offers Change data feed. It's the ability to simply get the

Change Data Capture information returned in a query. When it is enabled (by

table), it adds metadata columns behind the scenes to your tables that allow you to modify your

typical SQL Selection using a “where” clause to retrieve only changes since last execution.

We can ignore records where _change_type = ‘update_preimage’ since we are only interested in the

new values from updated records.

Combining this CDC capture information from Databricks with the Qlik Merge function offers a highly

performant way to do handle Incremental Loads. The Merge function provides a simple way of

automatically "merging" changes into an in-memory table. You simply pass the function a few

parameters and the results of the Databricks Changes query for the table.

Example where Change Data Feed is enabled in a table

[silvertable]: // full load
SELECT
 Country,
 NumVaccinated,
 AvailableDoses
FROM
 `default`.silvertable;

Qlik on Databricks – Best Practices Guide for Qlik Sense

23

If IsPartialReload() then
 //Sets a default starting point in time if this is the very first time
 Let Last_commit = Alt(chr(32)&Timestamp(Last_commit,'YYYY-MM-DD hh:mm:ss.ff')&chr(32),1);
 // Incremental load
 Merge only (_commit_timestamp, Last_commit) on Country Concatenate(silvertable)
 SELECT
 left(_change_type,1) as Operation, // We need only the first character
 Country,
 NumVaccinated,
 AvailableDoses,
 _commit_timestamp
 FROM table_changes('silverTable', $(Last_commit))
 WHERE _change_type !='update_preimage'
 ORDER BY _commit_timestamp;

 Drop field _commit_timestamp from [silvertable];//Optional
End if

This functionality:

1. Speeds up traditional Incremental Load applications.

2. Can be used to handle Incremental Loads for tables without Last Modified Timestamp

columns where you may be doing full reloads.

3. Partial Reloads to allow end users to quickly bring the latest and greatest changes very

quickly into memory so that they can analyze them.

Change data feed & Qlik Merge Function Details

Details about Databricks Change Data Feed can be found here:

https://docs.databricks.com/delta/delta-change-data-feed.html

Details about the Qlik Merge function can be found here: https://help.qlik.com/en-

US/sense/May2022/Subsystems/Hub/Content/Sense_Hub/Scripting/ScriptPrefixes/Merge.htm

Qlik on Databricks – Best Practices Guide for Qlik Sense

24

On-Demand Options
The following sections will discuss in detail the strategies on to leverage real/near time data from

Databricks.

On Demand App Generation (ODAG)
Commonly called ODAG, is about bringing in just the right chunk of data you’re

interested in to do your analysis. It’s a technique commonly used in large

volumes scenarios where it’s just not possible or efficient to load all of the data

into their Qlik app. It’s common to see this approach when the fact table exceeds

500-800 million rows (purely estimate, depends on rest of data model, how

frequent the source is updated and several other scenarios)

A simple example might be that user comes in to a “shopping cart app” where

they see trends and explore high level aggregated data, then make selections to

narrow in on the specific dimension values of interest by using the associativity in the engine. When

the user has confirmed that the cohort of data is

manageable enough of and has the appropriate

parameters chosen, then the user can launch the

“analysis app” which has all of the chart objects and

layout already defined, or after loading that data it can

return a blank sheet if desired.

Here is the official help document for creating and

managing On Demand Apps:

https://help.qlik.com/en-

US/sense/May2022/Subsystems/Hub/Content/Sense_Hub/DataSource/Manage-big-data.htm

Dynamic Views

Qlik on Databricks – Best Practices Guide for Qlik Sense

25

Dynamic views enable you to connect a base app to another app. Master visualizations from that app

can then be used in the base app. This enables app creators to use master

visualizations from the template app as dynamic charts in other apps. There is

no limit to the number of dynamic views you can add to your base app.

Dynamic views are made from three main components:

• Dynamic views: A mechanism added to base apps that connect to

template apps and enable app creators to add master visualizations

from the template app to the base app.

• Dynamic view template apps: A Qlik Sense app containing connections to data sources, such

as cloud databases.

• Dynamic charts: Master visualizations in the dynamic view template app that can be added to

base apps and that can be manually refreshed by users.

The template app and the base app do not need to

use the same data. If you have a data set covering

customer purchases, you could add a dynamic view

to a template app containing weather data to look at

any correlations.

If the data queried from the template app’s source

can be filtered using values in your base app, you can

use binding expressions in the template app’s script.

This enables the dynamic view to only query a subset of data specifically related to the selections in

the base app from the data sources of the template app. For example, you could bind the field

SalesDate in the base app to the field DailyTemperatureReadingDate in the template app.

Here is the official help document for creating and managing Dynamic Views:

https://help.qlik.com/en-

US/sense/May2022/Subsystems/Hub/Content/Sense_Hub/DynamicViews/dynamic-views.htm

Direct Query Applications

Qlik on Databricks – Best Practices Guide for Qlik Sense

26

Direct Query gives the user more options on how they want to access their data in order to suit their

individual needs. Accessing the data through Direct Query allows the user to keep the data in its

underlying data source. This increases the speed at which users can interact with their data in

exchange for some of the flexibility that an in-memory Qlik Cloud app offers.

In general, it is recommended that you import your data into Qlik Cloud whenever possible. In-

memory Qlik Cloud apps allow you to better customize your experience and get the most out of your

data. However, if you find yourself in a situation where your goals cannot be met by importing data,

Direct Query might be the solution for you. Due to their streamlined functionality, Direct Query apps

can also help new users take their first step towards creating fully functional and fast in-memory

apps.

You might consider using Direct Query when:

• Handling big data sources that would not fit in Qlik Engine memory

• Exploring new databases and tables.

• You are in need of near real-time data, for example to see how many orders have come in

during the last hour.

• Prototyping your dashboard in the initial phases before production.

• Extracting slices of data into the Qlik Sense engine through ODAG apps.

Please refer to Supported capabilities section of Qlik Help to be informed about which features are

available when you are creating Direct Query apps.

Creating a Direct Query Application data model

Qlik on Databricks – Best Practices Guide for Qlik Sense

27

1. Create one Qlik app as usual
2. Go to the Data Manager
3. Use the option Add data and then Files and other sources

4. Select your Databricks connection on the left panel

5. On your top right menu, you´re going to see the option Go to Direct Query

6. In the next screen, select the tables that will make part of your data model and press Next

Qlik on Databricks – Best Practices Guide for Qlik Sense

28

7. In the next screen, you need to define the relationships between your tables. Differently from in-

memory applications, Qlik Engine will not suggest the correct way of create the relations between

every table

8. For every New Relationship you need to define the left and right table, which fields are the keys and

relationship type (Inner Join / Full outer join)

Qlik on Databricks – Best Practices Guide for Qlik Sense

29

9. Create all your relationships and press Apply changes button waiting for the confirmation message

10. Now your model is ready to create your dashboard sheets. Press Analyze Sheet button

It is highly recommended you keep your model as simple as possible to avoid complex SQL queries being

generated

Creating a Direct Query Application sheet

You can design your sheets as you do in a regular Qlik application with some differences. Keep in mind

that some features like “Smart Search”, “Insight Advisor”, “Selections Tool” are disabled, and the user

can only filter on a field that is part of an object (filter pane, chart or table).

It is recommended you add as many dimensions as you expect your users to filter to a filter pane to make

their analysis easier

Appendix: Connecting Qlik to Databricks (QSE and Qlik SaaS)
The Qlik Sense Databricks Connector connects to Databricks clusters or Databricks SQL Warehouse
to query data in tables. Databricks SQL Warehouse are special Databricks clusters, dedicated to
serving BI/ad hoc analytics queries. While these clusters offer access to the same data visible to
conventional clusters, they isolate their workloads, allowing greater concurrency. These clusters are
provisioned based on small, medium, and large sizes avoiding the need to specify numbers and types
of master and worker nodes.

From a cost x performance perspective (especially if you have applications with Dynamic Views and

ODAG) it is recommended using Databricks SQL Warehouse

Qlik on Databricks – Best Practices Guide for Qlik Sense

30

Authentication Methods

To connect to Databricks, Qlik Sense currently supports the methods below to authenticate against

Databricks. For this method, we are using the “User name / Password” option. For more details

about other methods please refer to the https://help.qlik.com documentation

• User name
• User name and password
• No authentication
• Azure AD OAuth

Obtaining Databricks credentials and connection details
To create a data connection in Replicate to a Databricks instance you will need:

• Server Hostname
• Port
• HTTP Path
• Token

• Clusters

Information 1,2 and 3 can be extracted from

Databricks console going to the cluster

configuration or your SQL Endpoint

configuration and under the Advanced

Options section you will find the

JDBC/ODBC tab

Qlik on Databricks – Best Practices Guide for Qlik Sense

31

• Databricks SQL Warehouse

Information 1,2 and 3 can be extracted from

Databricks console going to the SQL

Warehouse section under the “Connection

details” tab

To create an access token, you need to go to User Settings section of your Databricks console and use the

Generate new token button

It is important to store the generated token in a safe place, because you cannot

 retrieve it after you close the screen

Creating the Data Connection

In your Qlik Cloud Hub there is a button on the top right of your screen. After clicking that

option you are going to see one option .

If you cannot see the options above, please contact your tenant admin to check your roles.

Qlik on Databricks – Best Practices Guide for Qlik Sense

32

Qlik Cloud will show you an interface to create a

Data Connection. In the Data sources you can

search for ‘databricks’.

Choose carefully which space you are creating the

data connection in, regarding your security plan

(available only to yourself, to a dev group, to

production, etc)

Now you´re going to see a form to configure your data connection. The first blocks is compound of

Database property Description Required

Host name The IP address or host name of the Databricks server. Yes

Port Server port for the Databricks database. Yes

Database The name of the Databricks database. Yes

HTTP Path Databricks compute resources URL. Yes

a) Those parameters were collected at step 1 “Obtaining Databricks credentials and connection details” with

exception of your database name (you need to check your Databricks console so see which databases are

available.

b) For Authentication use User Name And Password option

c) In the Credentials section use token as User Name and paste your token you created at step 1 as the

Password

d) For SSL Options, check the Enable SSL and Allow Self-signed server Certificate

e) For Query Timeout allow at least 10 min (600 seconds) as timeout. This is to prevent timeout failures when you

try to connect to a fully terminated cluster or SQL Endpoint giving time to it to bring back to fully operational

status.

Qlik on Databricks – Best Practices Guide for Qlik Sense

33

f) For Load Optimization check the option Enable Bulk Reader. This will include larger portions of data in the

iterations within a load. This may result in faster load times for larger datasets. If not selected, data will be

loaded row by row.

Qlik on Databricks – Best Practices Guide for Qlik Sense

34

Conclusion

This document showcased many integration options and best practices for using the

Qlik Sense Analytics Platform with the Databricks. The document discussed high level

concepts, practical applications, and most importantly strategies on how to combine

Qlik and Databricks best to optimize analytics at your organization. This document

will be updated as new capabilities are added to both the Databricks engine and Qlik

Sense platform.

© 2023 QlikTech International AB. All rights reserved. All company and/or product names may be trade names, trademarks and/or registered trademarks of the respective

owners with which they are associated.

About Qlik
Qlik’s vision is a data-literate world, where everyone can use data and analytics to

improve decision-making and solve their most challenging problems. Our cloud-based Qlik Active

Intelligence Platform® delivers end-to-end, real-time data integration and analytics cloud

solutions to close the gaps between data, insights and action. By transforming data into Active

Intelligence, businesses can drive better decisions, improve revenue and profitability, and

optimize customer relationships. Qlik does business in more than 100 countries and serves over

38,000 active customers around the world.  

qlik.com

